THE CANADIAN CHEMISTRY CONTEST 2013
 for high school and CEGEP students
 (formerly the National High School Chemistry Examination)

PART C: CANADIAN CHEMISTRY OLYMPIAD Final Selection Examination 2013

Free Response Development Problems (90 minutes)

This segment has five (5) questions. While students are expected to attempt all questions for a complete examination in 1.5 hours, it is recognized that backgrounds will vary and students will not be eliminated from further competition because they have missed parts of the paper.

Your answers are to be written in the spaces provided on this paper. All of the paper, including this cover page, along with a photocopy of Part A of the examination, is to be returned IMMEDIATELY by courier to your Canadian Chemistry Olympiad Coordinator.

Name

$$
\overline{\text { (LAST NAME, Given Name; Print Clearly }}
$$

City \& Province \qquad Date of Birth \qquad
E-Mail \qquad Home Telephone () - \qquad
Years at a Canadian high school \qquad No. of chemistry courses at a Québec CÉGEP

Male $\quad \square \quad$ Canadian Citizen $\square \quad$ Landed Immigrant $\square \quad$ Visa Student
Female $\square \quad$ Passport valid until November $2013 \square \quad$ Nationality of Passport \qquad
Teacher \qquad Teacher E-Mail \qquad

INORGANIC CHEMISTRY

1. In 1962 Neil Bartlett synthesized the first noble gas compound, XePtF_{6}, at the University of British Columbia. Subsequently, compounds of xenon have proven useful in chemical synthesis: xenon difluoride is used in the preparation of the anti-cancer drug 5-fluorouracil.
(a). State the valence shell electron configuration of xenon.
(b). Bartlett's synthesis yielded a mixture of products (among them XePtF_{6}) which was later reformulated as the salt $[\mathrm{XeF}]\left[\mathrm{PtF}_{5}\right]$. Assuming this compound contains platinum(IV), determine the oxidation state of xenon.

1 mark
(c). Subsequent to Bartlett's discovery, Claassen, Selig and Malm reported the synthesis of XeF_{4}. Xenon tetrafluoride undergoes hydrolysis to give the highly reactive solid xenon trioxide.

Applying Lewis structures and VSEPR theory, sketch the molecular geometry of XeO_{3}, indicating all valence electron pairs.

1 mark

State the name of the molecular geometry for XeO_{3}.

1 mark

Estimate the $\mathrm{O}-\mathrm{Xe}-\mathrm{O}$ bond angles to the nearest degree.

1 mark
(d). Using the data provided below, calculate the dissociation enthalpy of an $\mathrm{Xe}-\mathrm{F}$ bond. Xenon tetrafluoride sublimes at $117^{\circ} \mathrm{C}$.
standard enthalpy of formation, $\mathrm{XeF}_{4}=-267 \mathrm{~kJ} \mathrm{~mol}^{-1}$
standard enthalpy of sublimation, $\mathrm{XeF}_{4}=+61 \mathrm{~kJ} \mathrm{~mol}^{-1}$
bond dissociation enthalpy, $\mathrm{F}_{2}=+155 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(e). Relative to the lighter noble gases, xenon is approximately 20 times less abundant in the atmosphere than predicted. One theory to explain the missing xenon is that it displaces silicon from quartz $\left(\mathrm{SiO}_{2}\right)$ under high temperatures and pressures experienced in the Earth's crust. In 2011, Schrobilgen and Brock reported the first synthesis of XeO_{2} at McMaster University.

Carbon dioxide sublimes at $-78^{\circ} \mathrm{C}$ and silicon dioxide melts between 1600 and $1725^{\circ} \mathrm{C}$. Account for this difference by comparing and contrasting the bonding in CO_{2} and SiO_{2}.

Xenon dioxide is insoluble in water and has a melting point greater than $0^{\circ} \mathrm{C}$. On the Pauling scale, xenon has an electronegativity of 2.6 and oxygen has an electronegativity of 3.4. Draw a structure for XeO_{2} that is consistent with all of the information provided.

PHYSICAL CHEMISTRY

2. Answer the following questions for the chemical reaction between carbon monoxide and hydrogen gas to produce liquid methanol.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \quad \Delta \mathrm{H}^{\mathrm{o}}=-128 \mathrm{~kJ} / \mathrm{mol}
$$

(a). If you increase the temperature of this reaction from $200^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$, will the equilibrium shift towards the reactants, product, or remain unchanged?

$$
1 \text { mark }
$$

(b). If you decrease the volume of the reaction container, will the equilibrium shift towards the reactants, product, or remain unchanged?
(c). If you remove methanol from the reaction once it starts to form, will the equilibrium shift towards the reactants, product, or remain unchanged?

1 mark
(d). Given the following standard entropy values: $\mathrm{S}^{\mathrm{o}}{ }_{\mathrm{CO}(\mathrm{g})}=198 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, $\mathrm{S}_{\mathrm{H}_{2}(\mathrm{~g})}^{\mathrm{o}}=131 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, and $\mathrm{S}_{\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})}^{\mathrm{o}}=127 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, is this reaction spontaneous at $25^{\circ} \mathrm{C}$?
(e). Explain why the spontaneity of this reaction depends on temperature.
(g). Calculate the equilibrium constant (K) for this reaction at both $25^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$.
(h). Does the magnitude of the equilibrium constant at different temperatures agree with the predicted spontaneity of the reaction at different temperatures?

ORGANIC CHEMISTRY

3. As you read this question, or for that matter whenever you feel stressed, your adrenal gland releases a concoction of steroidal hormones. This includes cortisol (compound 2, below) which stimulates gluconeogenesis (the breakdown of glycogen to glucose-1-phosphate) and gives your cells access to stored-up energy.

(a). How many chirality centres (stereocentres) are present in cortisol? What is the absolute configuration of the carbon atom labeled as C17?

Chirality centres: Configuration at C17:
(b). State the type of reaction being carried out by the enzyme 11β-hydroxysteroid dehydrogenase Type $1(11 \beta$-HSD1) during the conversion of 1 to 2 . Propose a laboratory reagent you might use to carry out the same reaction.

Due to its ubiquitous availability from nature, geraniol (3), the primary component of rose oil, is a commonly used starting material in organic synthesis. Nerol (4) is an isomer of geraniol.

geraniol (3)

(c). What is the stereochemical relationship between geraniol and nerol?
(d). When $\mathbf{3}$ is treated with one equivalent of $m C P B A$ (meta-chloroperoxybenzoic acid), a mixture of two compounds having identical proton NMR and infra-red spectra are produced in a 1:1 ratio. Draw the structures of these two products.
(e). Draw the products for each of the reactions of geraniol shown below (there may be more than one compound required). Note: $\mathrm{PCC}=$ pyridinium chlorochromate.

5 marks
(f). Nerol is readily converted into an achiral cyclic compound (formula $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$) when exposed to aqueous sulfuric acid. Draw the structure of this compound. Hint: under acidic conditions alcohols can be protonated, making them good leaving groups.

ANALYTICAL CHEMISTRY

4. Many redox titrations can be followed potentiometrically using a platinum wire indicator electrode and a suitable reference electrode. For example, iodide (I^{-}) can be determined by titration in acidic solution with standard permanganate $\left(\mathrm{MnO}_{4}{ }^{-}\right)$, forming manganese(II) $\left(\mathrm{Mn}^{2+}\right)$ and iodine $\left(\mathrm{I}_{2}\right)$. During the titration, the potential recorded by the platinum wire is initially determined primarily by the $\mathrm{I}^{-}-\mathrm{I}_{2}$ redox couple; after the equivalence point, it is determined primarily by the $\mathrm{MnO}_{4}{ }^{-}-\mathrm{Mn}^{2+}$ redox couple. The relevant standard reduction potentials for these species are:

$$
\begin{array}{ll}
\mathrm{I}_{2(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-} & E_{\text {red }}^{\circ}=0.620 \mathrm{~V} \\
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} & E_{\text {red }}^{\circ}=1.507 \mathrm{~V}
\end{array}
$$

(a). Write a balanced net ionic equation for the reaction of permanganate with iodide.
(b). What colour changes might you expect to observe during the course of this titration?

1 mark
(c). In practice, analysts prefer to use a potentiometric measurement rather than exploiting a visual colour change to determine the end-point for this reaction. Explain why this is the case.
(d). In order to perform this titration, the analyst needs to add either excess acid or a buffer solution to the sample. Why is this necessary?

The potentiometric titration can also be reversed, in the sense that iodide can be used as the titrant in order to determine permanganate. Under such circumstances, a known mass of a sample containing manganese is first treated with ammonium persulphate $\left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right)$, then boiled, and then allowed to cool before titrating with standard iodide solution.
(e). What is the purpose of the ammonium persulphate, and why is the solution boiled before the titration?

A 0.5697 g sample of a manganese-containing ore is digested in acid, treated with ammonium persulphate, boiled, cooled to $25^{\circ} \mathrm{C}$, adjusted to pH 5.56 using by adding a suitable buffer, and titrated with 1.012 M KI solution yielding an equivalence point volume of 31.8 mL .
(f). Using the form of the Nernst equation given below, estimate the reduction potential recorded by the platinum electrode before the equivalence point when exactly half of the permanganate has been titrated. Assume that the iodine produced has a negligible effect on this value. Show your calculation for full marks.

$$
E=E^{\circ}-\frac{R T}{n F} \ln \left(\frac{[\mathrm{Red}]^{b}}{[\mathrm{Ox}]^{a}}\right) \text { for } a \mathrm{Ox}+n \mathrm{e}^{-} \rightarrow b \text { Red }
$$

3[marks

(g). What is the manganese content of the ore sample, expressed as a percentage by weight? Show your calculation for full marks.

BIOLOGICAL CHEMISTRY

5. Amino acids are one of the basic molecules that serve many purposes in living organisms. They can polymerize to form polypeptides and eventually proteins that serve diverse functions.
(a). Which of the following represents the structure of the amino acid glycine under physiological conditions ($\mathrm{pH}=7.4$)? Circle the correct answer.

1 mark
(b). Consider the two amino acids shown below. Draw the two possible dipeptides that would result from peptide bond formation between one molecule and the other. Draw each dipeptide in the form it would exist at pH 1.0 .

cysteine

phenylalanine

A group of enzymes that catalyze peptide bond formation could serve to maintain tight control of many interconnected physiological functions. One way of studying kinetic effects of molecules involved in an enzyme-catalyzed reaction is to use a steady state assumption to simplify kinetic constants involved. Consider the following reaction where an enzyme (E) converts a particular substrate (S) into a product (P) via a transition state (ES).

$$
\mathrm{E}+\mathrm{S} \underset{k_{-1}}{k_{1}} \mathrm{ES} \xrightarrow{k_{2}} \mathrm{E}+\mathrm{P}
$$

Assuming steady state exists, a simplified constant $\left(\mathrm{K}_{\mathrm{m}}\right)$ can be expressed as the following:

$$
K_{m}=\frac{k_{-1}+k_{2}}{k_{1}}
$$

(c). Explain what is meant by the term "transition state".
(d). How would values of K_{m} compare between low-affinity and high-affinity enzymes?

1 mark
(e). If enzyme A binds to the substrate 50 times stronger than enzyme B, what is the ratio of the catalytic rate between enzyme A and enzyme B if the energy of the two transition states is identical? At physiological temperature $\left(37^{\circ} \mathrm{C}\right)$, what is the difference in activation energy between the two reactions?

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	$(231.0$	(238.0)	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

	Symbol Symbole	Value Quantité numérique	
Atomic mass unit	$a m u$	$1.66054 \times 10^{-27} \mathrm{~kg}^{-1}$	Unité de masse atomique
Avogadro's number	N	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$	Nombre d'Avogadro
Charge of an electron	e	$1.60218 \times 10^{-19} \mathrm{C}$	Charge d'un électron
Dissociation constant $\left(\mathrm{H}_{2} \mathrm{O}\right)$	K_{w}	$1.00 \times 10^{-14}\left(25^{\circ} \mathrm{C}\right)$	Constante de dissociation de l'eau ($\left.\mathrm{H}_{2} \mathrm{O}\right)$
Faraday's constant	F	$96485 \mathrm{C} \mathrm{mol}^{-1}$	Constante de Faraday
Gas constant	R	$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	Constante des gaz
		$0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	
Mass of an electron	m_{e}	$9.10939 \times 10^{-31} \mathrm{~kg}^{\prime}$	Masse d'un électron
Mass of a neutron	m_{n}	$1.67493 \times 10^{-27} \mathrm{~kg}^{2}$	Masse d'un neutron
Mass of a proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{~kg}$	Masse d'un proton
Planck's constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$	Constante de Planck
Speed of light	c	$2.997925 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Vitesse de la lumière
Rydberg constant	R_{∞}	$1.097 \times 10^{7} \mathrm{~m}^{-1}$	Constante de Rydberg

$1 \AA$	$=1 \times 10^{-10} \mathrm{~m}$			
1 atm	$=101.325 \mathrm{kPa}$			
1 bar	$=1 \times 10^{5} \mathrm{~Pa}$	\quad	STP/TPN	SATP/TPAN
:---	:---	:---		
273.15 K	298 K			
100 kPa	100 kPa			

