40th INTERNATIONAL CHEMISTRY OLYMPIAD

UK Round One - 2008

MARKING SCHEME

Notes

Chemical equations may be given as sensible multiples of those given here.

State symbols do not need to be included in the chemical equations to obtain the mark(s).

Answers should be given to an appropriate number of significant figures although the marker should only penalise this once.

Total 62 marks.

Ques	tion 1		·
		Answer	Marks
(a)		$SiO_2 + C \rightarrow Si + CO_2$	1
		(also accept $SiO_2 + 2C \rightarrow Si + 2CO$)	
(b)	i)	109 °	1
	ii)	$SiHCl_3 + H_2 \rightarrow Si + 3HCl$	1
(c)	i)	$4SiH(OCH2CH3)3 \rightarrow SiH4 + 3Si(OCH2CH3)4$	1
	ii)	$SiH_4 + 2O_2 \rightarrow SiO_2 + 2H_2O$	1
(d)	i)	$C_x = 2.00 \times 10^{-3} \times 3300 (1 - 0.95)^{-0.998} = 131 \text{ ppm}$	2
	- fi)	If k is small, $k-1 \approx -1$ $\therefore 10 = 8.00 \times 10^{-6} \times 1300 (1 - x)^{-1}$ 1 - x = 0.00104 0.104% would have to be discarded	. 2

9 marks

Questi	on 2	
	Answer	Marks
(a)	H ₃ C CH ₃	3
(b)	CH_3 CH_3 CH_3 CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2	2
(c)	Zero	1
(d)	In 40 min, $(42-7) \mu g/g$ dry mushroom of vitamin D_2 produced $(42-7)/40 = 0.875 \mu g(g dry mushroom)^{-1}min^{-1}$ $\therefore k = 0.0146 \mu g(g dry mushroom)^{-1}s^{-1}$ (1 mark for the value of k, and 1 mark for the correct units)	2
(e)	In 40 min, (14-3) μ g/g dry mushroom of vitamin D ₂ produced \therefore In 60 min, ((14-3) x 60/40) + 3 = 19.5 μ g/g dry mushroom In 10g of dry mushrooms, 19.5 x 10 = 195 μ g of vitamin D ₂	1
(f)	At 25 °C, $k_{(T)} = A \times e^{(-E_a) \cdot (8.314 \times 298)}$ At 35 °C, $2k_{(T)} = A \times e^{(-E_a) \cdot (8.314 \times 308)}$ $e^{(-E_a) \cdot (8.314 \times 308)} = 2 \times e^{(-E_a) \cdot (8.314 \times 298)}$ $-E_a/(8.314 \times 308) = \log_e 2 - E_a/(8.314 \times 298)$ $0.0004036 E_a - 0.0003905 E_a = 0.693$ $0.0000131 E_a = 0.693$ $E_a = 53 \text{ kJ mol}^{-1}$	2

Questio	On 3 Answer	Marks
(a)	$Hg(CNO)_2 \rightarrow Hg + N_2 + 2CO$	1
(b)	2(-111) - 386 = -608 kJ mol ⁻¹	2
(c)	$O \leftarrow N = C - Hg - C = N \rightarrow O$ (also accept $^{-}O - ^{+}N = C - Hg - C = N^{+} - O^{-}$)	1
(d)	N≡C-O-Hg-O-C≡N (also accept Hg²+ (⁻C≡N⁺-O⁻)₂)	1
(e)	Aromatic structure: OH NON-aromatic structure:	2
	O NO	

Question 4				
		Answer	Marks	
(a)		6	1	
(b)	i)	Al ₂ Cl ₆	1	

	ii)	CI CI CI	1
		CI CI (Dative bond arrows not essential)	
	iii)	8	1
(c)		AIP + $3H_2O \longrightarrow AI(OH)_3 + PH_3$ (also accept 2AIP + $3H_2O \rightarrow AI_2O_3 + 2PH_3$)	1
(d)		6	1
(e)	i)	iBu H SiPh ₃ H SiPh ₃ iBu SiPh ₃ iBu	
	ii)	iBu H iBu SiPh ₃ iBu Al PH H P Al iBu H P Al iBu Ph ₃ Si iBu , Ph ₃ Si iBu	2
(f)		Ph ₃ Si SiPh ₃ Ph ₃ Si Bu Ph ₃ Si	3
(g)		methylpropene	1

		Answer	Marks
(a)	i)	301	1
	ii)	114	1
	iii)	227	1
(b)		9!/2 = 181440	2
(c)		1- Cysteine 2- Isoleucine 3- Leucine 4- Glutamine 5- Aspartic Acid 6- Cysteine 7- Proline (Lose one mark for each incorrect amino acid)	5

Ques	Question 6				
	_	Answer	Marks		
(a)	i)	HOR OH Fexofe nadine	1		
	ii)	(120.14 – 112.00)/112.00 = 36.458 / (RMM of fexofenadine) ∴ RMM of fexofenadine = 501.6	1		
	iii)	RMM of structure = $(2 \times M_r(R)) + 347.4$ $\therefore 2 \times M_r(R) = 501.6 - 347.4 = 154.2$ $M_r(R) = 77.1$ $R = C_6H_5$ (accept 'phenyl group')	1		
(b)		H H CN	1		

