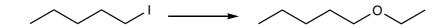
Organic Chemistry

Mock Exam

Part I: Multiple-Choice Questions (20%)

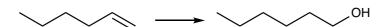
- 1. Ionic reaction:
 - A. undergoes a heterolytic reaction process
 - B. must have at least one carbocation intermediate
 - C. usually has only one step
 - D. contains free radicals to propagate reaction chain
- 2. Which of the following species is a <u>nucleophile</u>:
 - A. methyl carbocation (H₃C⁺)
 - B. butane (CH₃CH₂CH₂CH₃)
 - C. hydroxide (OH-)
 - D. none of above
- 3. What is S_N2 stand for:
 - A. bimolecular nucleophilic substitution
 - B. two-molecular nucleophilic substitution
 - C. unimolecular nucleus subtraction
 - D. double-molecular electrophilic substitution
- 4. Which of the following carbocation is the most stable:

 - B. •
 - C.
 - D.

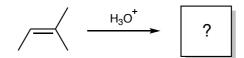

_	XX71 ' 1	C /1	C 11 '		- 41	1 4 1		
Э.	wnich	or the	following	species i	is the	best .	ieaving g	group:

- A. chloride (Cl⁻)
- B. iodide (I-)
- C. hydroxide (-OH)
- D. alkoxide (-OR)

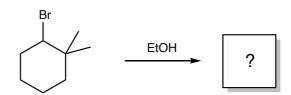
6. The rate law for the S_N1 reaction is:


- A. rate = k [substrate]
- B. rate = k [nucleophile]
- C. rate = k [substrate][nucleophile]
- D. rate = k

7. Identify the reagent used for the following transformation:


- B. OH
- C. CN
- D. ____

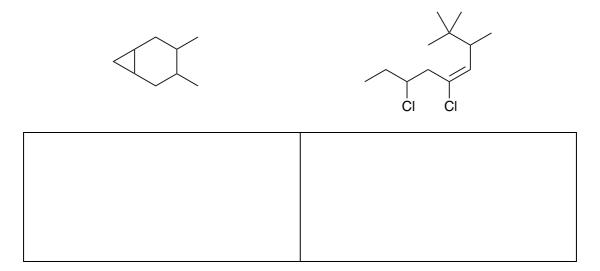
8. Identify the reagent(s) used for the following transformation:


- A. H₂O₂
- B. H₃O⁺
- C. 1) Hg(OAc)₂, H₂O; 2) NaBH₄
- D. 1) BH₃·THF; 2) H₂O₂, NaOH

9. Identify the major product of the following reaction:

- A. HO
- B. OH
- C. ____
- D.

10. Identify the major product of the following reaction:

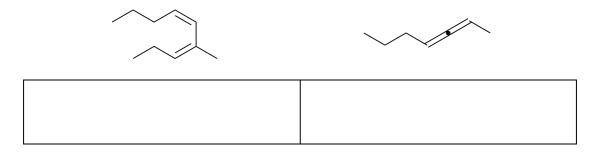

- A. OEt
- B. OEt
- C. OEt
- D. OEt

Part II: Fill-in-Blank and Short Answer Questions (20%)

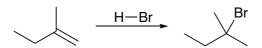
11.	The S _N 2 reaction is characterized by the inversion of stereochemical configuration, or the
	Walden inversion. This feature is called
12.	Because elimination reaction has a value of ΔG at low temperature, and
	its ΔS is, heat is needed to add for a greater yield.
13.	Markovnikov addition is to add hydrogen to the carbon which links to hydrogen
	atoms.
14.	A molecule which has a reflectional symmetry must chirality.
15.	Explain the difference between transition state and intermediate.
16.	Describe the shape of the potential energy curve of a $S_{\rm N}2$ reaction with core steps and two
	proton transfer processes (before and after the core step). You can draw a graph to support your
	answer.

Part III: Free-Response Questions (60%)

17. Name the following molecules.



- 18. Draw a skeletal formula for each of the following compounds.
- (a) 2-cyclobutyl-1,3-diethyl-5-isopropylcyclohexane
- (b) (1R,2R,3S,5R)-1-bromo-3-ethyl-2,5-dimethylcyclohexane


(a)	(b)

- 19. Dienes are compounds that possess two carbon-carbon double bonds.
- (a) Depending on the proximity of the π bonds, dienes are classified as cumulated, conjugated, or isolated.
 - In **cumulated dienes**, also called allenes, the π bonds are adjacent.
 - In conjugated dienes, the π bonds are separated by exactly one σ bond.
 - In **isolated dienes**, the π bonds are separated by two or more σ bonds.

For the two dienes shown below, give them the relevant classification (cumulated diene, conjugated diene, or isolated diene).

- (b) When undergo addition reactions, conjugated dienes usually have different regiochemical preferences compared with the addition reactions on normal (isolated) alkenes.
 - (i) Propose a mechanism for the following addition reaction of an isolated alkene.

When butadiene is treated with HBr, a similar process takes place, but two major products are observed. These compounds are said to be the products of **1,2-addition** and **1,4-addition**, respectively. This terminology derives from the fact that the starting diene contains a π system spread over four atoms, and the positions of H and Br are either at C1 and C2 or at C1 and C4. The products are called the **1,2-adduct** and the **1,4-adduct**, respectively.

(ii) By considering the carbocation formed in the reaction process, propose a plausible mechanism to explain the formation of the 1,4-adduct.

(iii) The exact product distribution (the ratio of products) of this reaction is temperature
dependent. At high temperature, the 1,4-adduct is preferable, while at low temperature, the
reaction favors to produce 1,2-adduct. Given that the production of the 1,4-adduct is under
thermodynamic control, draw an energy diagram to illustrate this reaction phenomenon.

synthesis of <i>trans</i> -5-decene:							
	// -	\rightarrow \checkmark	<u> </u>	> /\			
	•						