Lecture 4 Alkyl Halides, Substitutions on Saturated Carbons

А.И.Соч

2021/11/25

Contents

- 有机反应机理
 - 基本有机反应类型
 - 有机化学中的电子效应
- 卤代烃
 - 卤代烃的命名
 - 卤代烃的基本理化性质
- 饱和碳原子上的亲核取代反应
 - S_N2反应
 - S_N1反应
 - 影响卤代烃亲核取代反应的因素
 - 合成设计初步——官能团的转化
 - *生化中的亲核取代反应

Organic Mechanisms

Basic Organic Reactions, Electron Effects

Basic Organic Reactions

• 基本有机反应

自由基反应(free radical reaction)
离子型反应(ionic reaction)
协同反应(concerted reaction)

Basic Organic Reactions

• 自由基反应(free radical reaction)

均裂(homolysis)产生自由基(free radical)

分子均裂产生自由基而引发的反应称为自由基反应

• 离子型反应(ionic reaction)

异裂(heterolysis)产生离子

分子异裂产生阴阳离子而引发的反应称为离子型反应

Basic Organic Reactions

• 协同反应(concerted reaction)

在反应过程中, 旧键断裂和新键形成在同一步完成的反应称为协同反应

• 亲核试剂与亲电试剂

Methyllithium

The carbon atom is electron rich

碳原子中心富电子 **亲核试剂(nucleophile)**

Methyl chloride

The carbon atom is electron deficient

碳原子中心贫电子 亲电试剂(electrophile)

NUCLEOPHILES		ELECTROPHILES				
FEATURE	EXAMPLE	FEATURE	EXAMPLE			
Inductive effects	H H C Li H	Inductive effects	$ \begin{array}{c} H \\ + \\ C \\ + \\ H \end{array} $			
Lone pair	н Н	Empty <i>p</i> orbital				
π Bond						

• Practice: identify all nucleophilic centers and all electrophilic centers in the following compound:

nucleophilic centers

electrophilic center

• 有机化学中的电子效应

诱导效应(inductive effect)

共轭效应(conjugation effect)

超共轭效应(hyperconjugation)

场效应(field effect)

- 诱导效应(inductive effect)
 - 电子沿着原子链传递

$$F \leftarrow CH_2 \leftarrow C \leftarrow O \leftarrow H$$

• 作用随距离增长迅速下降,一般只考虑三根键的影响

$$\delta$$
- δ + $\delta\delta$ + $\delta\delta\delta$ + $\delta\delta\delta$ + C 1 \leftarrow C H₂ \leftarrow C H₃

· 以乙酸的α氢作为标准,如取代基的给电子能力比其强,则具有给电子 诱导效应 H— CH_2COOH Y— CR_3 $X \longrightarrow CR_3$

吸电子诱导效应 (-1) 标准

给电子诱导效应 (+I)

• 比较诱导效应的大小和方向

- 与碳原子直接相连的原子,<u>电负性越大</u>,吸电子诱导效应<u>越强</u>
- · 与碳原子直接相连的基团,<u>不饱和程度越大</u>, 吸电子诱导效应<u>越强</u>
- · 基团带正电荷-吸电子; 负电荷-给电子; 具有配位键-吸电子

$$-\dot{N}R_3 > -NO_2 > -CN > -COOH > -COOR > -\frac{0}{CR}(或-CH)$$

> $-F > -CI > -Br > -I > -C \equiv CH > -OCH_3(或-OH)$
> $-C_6H_5 > -CH = CH_2 > H$

- 共轭(conjugation)
 - <u>单双键交替(π - π)</u>或<u>双键碳的相邻原子上有轨道(p- π)</u>的体系称为共轭体系 (conjugated system)
 - 在共轭体系中, π电子(p电子)的运动范围会扩展到整个体系, 即电子 发生<u>**离域(delocalized)**</u>

- 共轭效应(conjugation effect)
 - 在共轭体系中,由于原子间的相互影响而使体系内的π电子(或p电子) 分布发生变化的电子效应称作共轭效应
 - 共轭体系上能**降低**体系π电子云密度的基团有**吸电子共轭效应**; 共轭体系 上能**增高**体系π电子云密度的基团有**给电子共轭效应**
 - 特点:只能在共轭体系中传递;无论共轭体系有多大,共轭效应始终能 贯穿于整个共轭体系中

• 吸电子/给电子共轭效应

- 含有<u>孤对电子的原子</u>构成的基团,如N、O、F、S、Cl、Br、l构成的基团: 羟基(-OH)、氨基(-NH₃)、卤素(-X),这类基团一般为给电子共轭效应
- 含有**重键**的基团:只有该基团第一个原子构成不饱和键,才有共轭效应, 形如-A=B,如果A的电负性大于B,那么它就有给电子共轭效应,比如: 亚氨基(-N=CR₂);
- 反之, 即<u>A的电负性小于B</u>, 就是<u>吸电子共轭效应</u>, 比如: 甲酰基(-CHO)、 羧基(-COOH)、硝基(-NO₂)

Practice: analyze electron effects of the underline groups:

(i)
$$CH_2 = CH - C \equiv N$$

(ii)
$$CH_2 = CH - NO$$

(i)
$$CH_2=CH-\underline{C\equiv N}$$
 (ii) $CH_2=CH-\underline{NO}$ (iii) $CH_2=CH-\underline{N}$ CH_3

(i)
$$CH_2 = C \longrightarrow C \equiv N$$
 有吸电子诱导效应和吸电子共轭效应。

(ii)
$$CH_2 = C \longrightarrow N = O$$
 有吸电子诱导效应和吸电子共轭效应。

- 超共轭效应(hyperconjugation)
 - <u>C-H的σ轨道</u>与<u>C=C的π轨道(或其旁边碳上的p轨道)接近平行</u>时的体系 称为超共轭体系
 - 在超共轭体系中,C-H的 σ 键与 π 键(或p轨道)也会产生电子的离域现象,这种现象称为超共轭效应

- 超共轭效应(hyperconjugation)
 - 在超共轭效应中,C-H的σ键是**给电子**的
 - 超共轭效应比共轭效应小得多
 - π轨道或p轨道相邻基团超共轭效应的大小次序:

$$CH_3 - > RCH_2 - > R_2CH -$$

• 超共轭效应的表示方式:

$$H - C - C$$

- 场效应(field effect)
 - 取代基在空间中产生电场,对附近的基团产生影响的效应称为场效应

• 场效应与诱导效应的作用可能相反

Alkyl Halides

Nomenclature of Alkyl Halides, Physical Properties

Uses of Organohalides

dichlorodiphenyltrichloroethane 双对氯苯基三氯乙烷

氯苯那敏【扑尔敏】

三氯蔗糖

Nomenclature of Alkyl Halides

- 卤代烃的系统命名
 - 卤代烃的命名法与普通烷烃大致相同
 - 命名时,将卤原子当作取代基
 - 卤原子的前缀: fluoro-, chloro-, bromo-, iodo-

2-Chloropropane

2-氯丙烷

2-Bromo-2-methylpentane

2-溴-2甲基戊烷

• 尽可能让取代基(包括卤原子)位序最小

• 手性中心的构型必须指明

(R)-5-Bromo-2,3,3-trimethylheptane

(R)-5-溴-2,3,3-三甲基庚烷

Nomenclature of Alkyl Halides

• Practice: assign a systematic name for each of the following compounds:

4,4-dibromo-1-chloropentane

1-bromo-1-methylcyclohexane

(R)-4-chloro-4-ethyloctane

Structure Properties

α(立, β(立, γ(立

$$\beta$$
 β
 β

• 卤代烃的级数

Physical Properties

• 卤代烃的分子间力: 取向力(dipole-dipole interactions)

Physical Properties

	氟化物		氯化物		溴化物		碘化物	
	沸点/℃	相对密度 (d420)	沸点/℃	相对密度 (d40)	沸点/℃	相对密度 (d420)	沸点/℃	相对密度 (d40)
CH_3-X	-78.4		-24.2	Maria Ba	3.6		42.4	2.279
CH_3CH_2-X	-37.7		12.3	44.5	38.4	1.440	72.3	1.933
CH ₃ CH ₂ CH ₂ —X	-2.5		46.6	0.890	71.0	1.335	102.5	1.747
$(CH_3)_2CH-X$	-9.4		34.8	0.859	59.4	1.310	89.5	1.705
$CH_3CH_2CH_2CH_2-X$	32.5	0.779	78.4	0.884	101.6	1.276	130.5	1.617
$CH_3CH_2CH(CH_3)$ —X	25.3	0.766	68.3	0.871	91.2	1.258	120	1.595
$(CH_3)_2CHCH_2-X$	25.1		68.8	0.875	91.4	1.261	121	1.605
$(CH_3)_3C-X$	12.1		50.7	0.840	73.1	1.222	100分解	
$CH_3CH_2CH_2CH_2CH_2-X$			108	0.883	130	1.223	157	1.517
X	10		142.5	1.000	165			
CH_2X_2	-52		40	1.336	99	2.49	180分解	3.325
CHX ₃	-83		61	1.489	151	2.89	升华	4.008
CX ₄	-128		77	1.595	189.5	3.42	升华	4.32

Substitutions on Saturated Carbons

 $S_N 2$, $S_N 1$, Factors Determining Which Reaction Predominates, Synthesis Route Design – Functional Group Transformation, *Nucleophilic Substitution in Biochem

Reactions on Alkyl Halides

• 卤代烃

为什么没有F?

(X = CI, Br, or I)

Reactions on Alkyl Halides

• 卤代烃的反应

• 卤代烃的亲核取代反应(nucleophilic substitution reaction)

Reactions on Alkyl Halides

• Back to 1930s...

A concerted mechanism

• What is $S_N 2$?

Rate = k [alkyl halide] [nucleophile]

Practice

7.2 The following substitution reaction exhibits second-order kinetics, and is therefore presumed to occur via an S_N 2 process:

$$I$$
 + NaOH \longrightarrow OH + NaI

- (a) What happens to the rate if the concentration of 1-iodopropane is tripled and the concentration of sodium hydroxide remains the same?
- (b) What happens to the rate if the concentration of 1-iodopropane remains the same and the concentration of sodium hydroxide is doubled?
- (c) What happens to the rate if the concentration of 1-iodopropane is doubled and the concentration of sodium hydroxide is tripled?

• The S_N2 Mechanism

• Practice: identify the nucleophile and substrate, then draw a mechanism for the following reaction:

$${igwedge}^{
m I}$$
 + NaOH ${igwedge}^{
m OH}$ + Na $^{
m I}$

- S_N2反应的速率
 - 位阻越小, 反应越快

• 基团越易离去,反应越快

$$I^{\ominus}$$
 > Br^{\ominus} > CI^{\ominus}

• 底物位阻对反应速率的影响

ethyl bromide (1°) attack is easy

isopropyl bromide (2°) attack is possible

tert-butyl bromide (3°) attack is impossible

• S_N2反应伴随立体构型翻转[Walden inversion]

立体专一性 stereospecificity

Back-side attack

Brack-side attack

• 背面进攻的位阻更小&轨道对称性匹配

• 反应历程

$$N \equiv C: + H C \xrightarrow{Br}: \longrightarrow N \equiv C - C + \vdots \xrightarrow{H} + \vdots \xrightarrow{Br}:$$

• Practice: draw the S_N^2 product that is obtained when (R)-2-bromobutane reacts with a hydroxide ion.

Additional steps for S_N2

Proton transfer at the beginning

Proton transfer at the end

• Proton transfer before and after the core process

• The complete S_N2 process

Nuc attack + loss of LG

Nuc:

Nuc:

Nuc + :LG

One concerted step

An S_N2 process is comprised of just one concerted step in which the nucleophile attacks with simultaneous loss of the leaving group.

Possible additional steps

If the substrate is an alcohol, then the OH group must be protonated before it can leave.

If the nucleophile is neutral, a proton transfer is required to remove the positive charge that is generated.

 Practice: ethyl bromide was dissolved in water and heated, and the following solvolysis reaction was observed to occur slowly, over a long period of time.
 Propose a mechanism for this reaction.

Does the LG need to be protonated first?

No. Bromide is a good LG.

Is the nucleophile neutral?

Yes. We will therefore need a proton transfer at the end of the mechanism in order to remove the positive charge.

Reactions on Alkyl Halides

• Back to 1930s...

A concerted mechanism

• What is $S_N 1$?

Rate =
$$k$$
 [substrate]

• The S_N1 Mechanism

• 反应历程

57

• 过渡态(transition state)与中间体(intermediate)

过渡态:能量高,不可被分离

中间体:能量低,可被分离

• Practice: identify the nucleophile and substrate, then draw a mechanism for the following reaction:

• 溶剂解反应(solvolysis reaction)

• 反应历程

- S_N1反应的速率
 - 碳正离子越稳定,反应越快

• 基团越易离去,反应越快

$$I^{\ominus}$$
 > Br^{\ominus} > CI^{\ominus}

• 碳正离子(carbocation)

呈sp²杂化 平面三角形

• 烷基能够稳定碳正离子

• S_N1反应得到完全消旋产物.....?

• Winstein离子对机理

• Winstein离子对机理

处于紧密离子对阶段时,生成的产物偏向于构型翻转

• Practice: draw the products of the following S_N1 reaction:

• S_N1中的重排(rearrangement)过程

• 氢迁移(hydride shift)

• 甲基迁移(methyl shift)

S_N1 Reactions

 \bullet Practice: predict the $S_N 1$ product, and draw a mechanism for the following reaction.

S_N1 Reactions

Additional steps for S_N1

Proton transfer at the beginning

Proton transfer at the end

Carbocation rearrangement

S_N1 Reactions

Rearrangement results mixtures

• The complete S_N1 process

Possible additional steps

S_N1 Reactions

• Practice: draw the mechanism of the following S_N1 process:

S_N1 Reactions

Proton transfer — Loss of LG — Carbocation — Nuc attack — Proton transfer

Does the LG need to be protonated before it can leave?

No. Bromide is a good LG.

Is the nucleophile ultimately positioned at a different location than the leaving group?

Yes. This indicates a carbocation rearrangement.

Is the nucleophile neutral?

Yes. We will therefore need a proton transfer at the end of the mechanism in order to remove the positive charge.

Comparison between $S_N 1 \& S_N 2$

Benzylic halides

Resonance stabilized

Vinyl halides and aryl halides are unreactive in substitution reactions

既存在位阻妨碍S_N2

Not stabilized by resonance

Not stabilized by resonance

又不能形成稳定的碳正离子进行S_N1

• Practice: identify whether each of the following substrates favors $S_N 2$, $S_N 1$, both, or neither:

The Nucleophile

- a strong nucleophile favors S_N2
- a weak nucleophile disfavors $S_N 2$ (and thereby allows $S_N 1$ to compete successfully $S_N 1$ does not depend a lot on nucleophile strength)

Common nucleophiles

	Weak		
I	$ extstyle{HS}^{\ominus}$	HO [⊝]	F^{\circleddash}
Br [⊖]	H ₂ S	RO^\circleddash	H ₂ O
Cl [⊝]	RSH	$N\equiv C^{\ominus}$	ROH

强亲核试剂一般具有较强的(Lewis)碱性和较大的极化能力

• Practice: does each of the following nucleophiles favor S_N2 or S_N1?

The Leaving Group

强酸的共轭碱是较好的离去基团

• Sulfonate ions can also be good leaving groups

Halides			Sulfonate ions		
l _O	Br^{\ominus}	Cl	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O 	O - -
lodide	Bromide	Chloride	Tosylate	Mesylate	Triflate

Practice

- **7.28** Consider the structure of the compound below.
- (a) Identify each position where an S_N 2 reaction is likely to occur if the compound were treated with hydroxide.
- (b) Identify each position where an S_N1 reaction is likely to occur if the compound were treated with water.

• The Solvent

protic solvent 质子性溶剂

polar aprotic solvent 非质子极性溶剂

protic solvent

The lone pairs on the oxygen atoms of H₂O stabilize the cation.

Hydrogen-bonding interactions stabilize the anion.

阴、阳离子均被溶剂化 有利于 $S_N 1$ — 稳定中间体及过渡态

polar aprotic solvent

The lone pairs on the oxygen atoms of DMSO stabilize the cation.

The anion is not stabilized by the solvent.

阳离子被溶剂化 有利于S_N2 – 较高能量的阴离子减小所需活化能

for S_N1

protic solvents favor the reaction

for S_N2

polar aprotic solvents favor the reaction

• Practice: when used as a solvent, will acetone favor an $S_N 2$ or an $S_N 1$ mechanism? Explain.

• **Summary**

FACTOR	FAVORS S _N 2	FAVORS S _N 1
Substrate	Methyl or primary	Tertiary
Nucleophile	Strong nucleophile	Weak nucleophile
Leaving group	Good leaving group	Excellent leaving group
Solvent	Polar aprotic	Protic

• Practice: determine whether the following reaction proceeds via an S_N1 or an S_N2 mechanism and then draw the product(s) of the reaction:

• 合成设计初步——官能团的转化

Intro to Synthesis Route Design

• 利用TsCI完成醇到其它官能团的转化(S_N2 process)

OTs是好的离去基团

Intro to Synthesis Route Design

• Practice: identify the reagents you would use to accomplish each of the following transformations:

• S_N2 reactions in biological systems – methylation

• SAM – the biological equivalent of methyl iodide

Biosynthesis reactions included SAM

*Biochem – Methylation

• Practice: choline is a compound involved in neurotransmission. The biosynthesis of choline involves the transfer of a methyl group from SAM. Draw a mechanism for this transformation:

hint: try to use
$$\begin{array}{c} CH_3 \\ \\ \\ S \\ \\ \\ \end{array}$$
 as an abbreviation for SAM

• Practice: choline is a compound involved in neurotransmission. The biosynthesis of choline involves the transfer of a methyl group from SAM. Draw a mechanism for this transformation:

The nitrogen atom functions as a nucleophilic center and attacks the electrophilic methyl group in SAM, forming an ammonium ion.