Chap10 Direct-Current (DC) Circuits

Electric Current

- the rate at which charge flows through a surface.
- Magnitude: $I = \frac{\Delta Q}{\Delta t}$
- SI unit: A [1 A = 1 C/s]
- Direction: the direction in which *positive charges* flow.

- The difference in electric potential between two points, which creates a current in a closed circuit.
- SI unit: V

Resistance ... scalar

- The resistance of an object depends on the material it is made of and its shape.
- Definition: $R = \frac{\Delta V}{I}$ material Slope = $\frac{1}{R}$
- SI unit: $\Omega [1 \Omega = 1 V/A]$
- Ohm's law: $\Delta V = IR$
- Resistance of an ohmic conductor:

$$R = \rho \frac{l}{A}$$

ρ: the resistivity of the material
l: the conductor's length
A: the conductor's cross-sectional area

• Resistivity of a material depends on its molecular & atomic structure and on temperature.

Electric Energy & Power

- Electric power: ••• scalar
 - Magnitude: $P = I \Delta V$
 - SI unit: W $[1 W = 1V \cdot A]$
 - As for ohmic resistors:

$$P = I^2 R = \frac{\Delta V^2}{R}$$

- The light intensity of a light bulb is related to its power.
- Electric energy: ... scalar
 - Magnitude: E = Pt
 - SI unit: J $[1 J = 1 W \cdot s]$, Common unit: kWh $[1kWh = 3.6 \times 10^6 J]$

Sources of EMF

> EMF:

- EMF (ε) stands for "*Electromotive Force*", but it is not a force, it is the work done (increase of electric potential energy) per unit charge.
- SI unit: volt (V)

 $\varepsilon = \Delta V + Ir$ $\Delta V = IR$

Internal Resistance:

- Internal resistance (r) is the resistance of a battery or a generator.
- Internal resistance subtracts voltage from the EMF, and the residual voltage is called the terminal voltage.

 $\Rightarrow \varepsilon = IR + Ir \Rightarrow \varepsilon I = I^2R + I^2r$

• The terminal voltage of the battery:

emf source

Combinations of Resistors

• Resistance adds:

 $R_s = R_1 + R_2 + R_3 + \cdots$

- Current remains the same: $I_s = I_1 = I_2 = I_3 = \cdots$
- Voltage adds:

 $V_s = V_1 + V_2 + V_3 + \cdots$

➤ In parallel:

• The reciprocal of resistance adds:

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

- Current adds: $I_p = I_1 + I_2 + I_3 + \cdots$
- Voltage remains the same: $V_p = V_1 = V_2 = V_3 = \cdots$

Complex Circuits & Kirchhoff's Rules

- Junction rule: •
- Conservation of charge

Conservation of

energ

• The sum of the currents entering any junction must equal the sum of the currents leaving that junction.

Loop rule: • •

- The sum of the potential differences across all the elements around any closed circuit loop must be zero.
- Loop *abcda*: $-V_1 V_2 V_3 + \varepsilon = 0$

(b) Sign conventions for resistors

-IR: Travel in current direction:

←Travel –

In each part of the figure "Travel" is the direction that we imagine going around the *loop, which is not necessarily* the direction of the current.

Exercise

Find <i>I</i> ₁ , <i>I</i> ₂ , and <i>I</i> ₃ in the right Figure.	
Junction c: $I_3 = I_1 + I_2$	
Loop abcda:	
$10V - (6.0\Omega)I_1 - (2.0\Omega)I_3 = 0$	- 🆈 -
Loop efcbe:	
$-14V + (6.0\Omega)I_1 - 10V - (4.0\Omega)I_2 = 0$	

[Exercise] A complex network

The right figure shows a "bridge" circuit. Find the currents I_1 , I_2 , and I_3 and the equivalent resistance of the network of five resistors.

Loop (1): $-(1\Omega)I_1 - (1\Omega)(I_1 - I_3) + 13V = 0$ Loop (2): $-(1\Omega)I_2 - (2\Omega)(I_2 + I_3) + 13V = 0$ Loop (3): $-(1\Omega)I_1 - (1\Omega)I_3 + (1\Omega)I_2 = 0$

Equivalent resistance of the network: $R_{eq} = \frac{13V}{I_1 + I_2} = \frac{13V}{11A} \approx 1.2\Omega$