

Newton's Thought Experiment

Galileo \Rightarrow Kepler \Rightarrow Descartes \Rightarrow Hooke \Rightarrow Newton

Newton's Law of Universal Gravitation

> Statement:

Every particle in the universe attracts every other particle with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between them.
This force acts along the line joining the two particles.
$>$ Formula:

$$
F_{g}=G \frac{m_{1} m_{2}}{\varrho^{2}}
$$

- universality
- mutuality gravitational constant $\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)$

- independence
- macroscopy

$>$ Gravitation of spherically symmetric bodies:

(a) F_{g} between two spherically symmetric masses $m_{1} \& m_{2} \ldots$
(b) ... is the same as if all the mass of each sphere is concentrated
 at the sphere's center.

$>$ Determining the value of G :

(1) Gravitation pulls the small masses toward the large masses, causing the vertical quartz fiber to twist.

The small balls reach a new equilibrium position when the elastic force exerted by the twisted quartz fiber balances the gravitational force between the masses.

Test your Understanding of the Gravitation

The planet Saturn has about 100 times the mass of the Earth and is about 10 times farther from the Sun than the Earth is. Compared to the acceleration of the Earth caused by the Sun's gravitational pull, how great is the acceleration of Saturn due to the Sun's gravitation?
(A) 100 times greater
(B) 10 times greater
(C) the same
(D) $\frac{1}{10}$ as great
(E) $\frac{1}{100}$ as great

Weight

$>$ Extended definition:

The weight of a body is the total gravitational force exerted on the body by all other bodies in the universe.

- a body at the Earth's surface

$$
\begin{array}{r}
\left.\begin{array}{c}
w=F_{g} \\
F_{\mathrm{g}}=G \frac{m_{\mathrm{E}} m}{R_{\mathrm{E}}^{2}} \\
w=m g
\end{array}\right] \Rightarrow g=G \frac{m_{\mathrm{E}}}{R_{\mathrm{E}}^{2}}\left\{\begin{array}{l}
\text { acceleration due to gravity } \\
\text { at the Earth's surface }
\end{array}\right) \\
m_{\mathrm{E}}=\frac{g R_{\mathrm{E}}^{2}}{G}=\frac{9.8 \times\left(6.38 \times 10^{6}\right)^{2}}{6.67 \times 10^{-11}} \mathrm{~kg}=5.98 \times 10^{24} \mathrm{~kg}
\end{array}
$$

- a body at a point where the distance r from the center of the Earth $\left(r>\boldsymbol{R}_{\mathrm{E}}\right)$

$$
\begin{gathered}
w=F_{\mathrm{g}}=G \frac{m_{\mathrm{E}} m}{r^{2}} \Longleftrightarrow g=G \frac{m_{\mathrm{E}}}{r^{2}} \\
w \propto \frac{1}{r^{2}} \quad g \propto \frac{1}{r^{2}}
\end{gathered}
$$

Test your Understanding of the Acceleration due to Gravity

Rank the following hypothetical planets in order from highest to lowest value of g at the surface:
(i) mass $=2$ times the mass of the earth, radius $=2$ times the radius of the earth;
(ii) mass $=4$ times the mass of the earth, radius $=4$ times the radius of the earth; (iii) mass $=\mathbf{4}$ times the mass of the earth, radius $=2$ times the radius of the earth; (iv) mass $=\mathbf{2}$ times the mass of the earth, radius $=\mathbf{4}$ times the radius of the earth.

Gravitational Potential Energy

$$
U=-G \frac{m_{\mathrm{E}} m}{r}\left(r>R_{\mathrm{E}}\right)(\operatorname{set} r \rightarrow \infty, U=0)
$$

Example: "From the earth to the moon"

In Jules Verne's 1865 story with this title, three men went to the moon in a sihell lired from a giant cannon sunk in the earth in Florida.
$G m_{\mathrm{E}} m$
(a) Find the minimum muzzle speed needed to shoot a shell straight uip to a negative with increasing the earth equal to the earth's radius $\boldsymbol{R}_{\mathrm{E}}$.
Neglect air resistance, the earth's rotation, and the gravitational pull of the moon. The earth's radius and mass are $R_{\mathrm{E}}=6.38 \times 10^{6} \mathrm{~m}$ and $m_{\mathrm{E}}=5.97 \times 10^{\mathbf{2 4}} \mathrm{kg}$.
(a) Point 1 is at $r=R_{\mathrm{E}}$, where the shell leaves the cannon with speed v_{1} (the target variable); Point 2 is at $r_{2}=2 R_{\mathrm{E}}, v_{2}=0$, so $K_{2}=0$.

According to the energy-conservation equation,

$$
K_{1}+U_{1}=K_{2}+U_{2}
$$

$$
\frac{1}{2} m v_{1}^{2}+\left(-\frac{G m_{\mathrm{E}} m}{R_{\mathrm{E}}}\right)=0+\left(-\frac{G m_{\mathrm{E}} m}{2 R_{\mathrm{E}}}\right) \Longrightarrow v_{1}=\sqrt{\frac{G m_{\mathrm{E}}}{R_{\mathrm{E}}}}=7.9 \times 10^{3}
$$

Example: "From the earth to the moon"

In Jules Verne's 1865 story with this title, three men went to the moon in a shell fired from a giant cannon sunk in the earth in Florida.
(b) Find the minimum muzzle speed that would allow a shell to escape from the earth completely (the escape speed).
Neglect air resistance, the earth's rotation, and the gravitational pull of the moon. The earth's radius and mass are $R_{\mathrm{E}}=6.38 \times 10^{6} \mathrm{~m}$ and $m_{\mathrm{E}}=5.97 \times 10^{24} \mathrm{~kg}$.
(b) In this case, $r_{2}=\infty$, so $U_{2}=0 ; v_{2}=0$, so $K_{2}=0$

According to the energy-conservation equation,

$$
K_{1}+U_{1}=K_{2}+U_{2}
$$

$$
\frac{1}{2} m v_{1}^{2}+\left(-\frac{G m_{\mathrm{E}} m}{R_{\mathrm{E}}}\right)=0+0
$$

escape
${ }^{\text {velocity) } v_{1}}=\sqrt{\frac{2 G m_{\mathrm{E}}}{R_{\mathrm{E}}}}=1.12 \times 10^{4} \mathrm{~m} / \mathrm{s}$

Application of Gravitation: Discovery of Unknown Planet

Application of Gravitation: Satellites

A projectile is launched from A toward B.
Trajectories (1) through (7) show the effect of increasing initial speed.
$>$ Satellites: Circular Orbits
slower speeds \& longer periods

$$
E=K+U=\frac{1}{2} m v^{2}+\left(-\frac{G m_{\mathrm{E}} m}{r}\right)=-\frac{G m_{\mathrm{E}} m}{2 r}
$$

Kepler's Laws of Planetary Motion

\checkmark Kepler's 1st Law:

- elliptical orbit
- Sun at one focus
\checkmark Kepler's 2nd Law:

line $S P$ sweeps out equal areas in equal times
\checkmark Kepler's 3rd Law:

$$
\frac{a^{3}}{T^{2}}=\text { const } . \propto m_{S}
$$

