

Work

$>$ Work done by a constant force, straight-line motion:

- Formula: $W=F s \cos \theta$
- SI unit: $\mathbf{J}(\mathbf{1} \mathbf{J}=\mathbf{1} \mathbf{N} \cdot \mathbf{m})$
- Work: Positive, Negative, or Zero

$$
\left.\begin{array}{rl}
0 \leq \theta<90^{\circ}, \cos \theta>0, W>0 & \Rightarrow \text { positive work } \\
90^{\circ}<\theta<180^{\circ}, \cos \theta<0, W<0 \Rightarrow
\end{array}\right] \begin{aligned}
& \text { negative worlk } \\
& \theta=90^{\circ}, \cos \theta=0, W=0 \Rightarrow \text { NO work }
\end{aligned}
$$

$>$ Work done by a varying force, straight-line motion:

Power

- average power: $P_{a v}=\frac{\Delta W}{\Delta t}=F_{\|} \frac{\Delta s}{\Delta t}=F_{\|} v_{a v}=F v_{a v} \cos \theta$ (F is constant $)$
- instantaneous power: $P=\lim _{\Delta t \rightarrow 0} \frac{\Delta W}{\Delta t}=\frac{d W}{d t}=F v \cos \theta_{\text {\& }}(F$ is constant or varying $)$
- SI unit: $\mathbf{W}(\mathbf{1 ~ W}=\mathbf{1} \mathbf{~ J} / \mathbf{s})$

1. An electron moves in a straight line toward the east with a constant speed of $8 \times 10^{\mathbf{7}} \mathrm{m} / \mathrm{s}$. It has electric, magnetic, and gravitational forces acting on it. During a 1-m displacement, the total work done on the electron is
(A) positive
(B) negative
C) zero
(D) not enough information given to decide
2. A force of 150 N is required to keep an object sliding at a constant speed of $2 \mathrm{~m} / \mathrm{s}$ across a rough floor. How much power is being expended to maintain this motion?
(A) 50 W
(B) 300 W
(C) 200 W
(D) 400 W

Kinetic Energy

- Formula: $\left[\begin{array}{l}---\cdots=\frac{1}{2} m v^{2}\end{array}\right.$
- SI unit: $\mathbf{J}\left(\mathbf{1} \mathbf{J}=\mathbf{1} \mathbf{~ k g} \cdot \mathrm{m}^{2} / \mathbf{s}^{\mathbf{2}}=\mathbf{1} \mathbf{N} \cdot \mathrm{m}\right)$

Work-Energy Theorem

$$
W_{\text {tot }}=K_{2}-K_{1}=\Delta K \quad(\text { valid in general })
$$

An block of mass m is traveling at constant speed v in a circular path of radius r. How much work is done by the centripetal force during one half of a revolution?
(A) $\pi m v^{2}$
(B) $2 \pi m v^{2}$
(C) 0
(D) $3 \pi m v^{2} r$
(E) $2 \pi m v^{2} r$

Example: Motion with a varying force

An air-track glider of mass 0.1 kg is attached to the end of a horizontal air track by a spring with force constant $20.0 \mathrm{~N} / \mathrm{m}$. Initially the spring is unstretched and the glider is moving at $1.5 \mathrm{~m} / \mathrm{s}$ to the right. Find the maximum distance d that the glider moves to the right if the air track is turned on, so that there is no friction.

As the glider moves from $x_{1}=0$ to $x_{2}=d$, the total work done on the glider is: $W_{\text {tot }}=W_{F_{\text {spring }}}=-\frac{1}{2} k d^{2}$
The initial kinetic energy is: $K_{1}=\frac{1}{2} m v_{1}^{2}$
The final kinetic energy is: $K_{2}=0$

According to the work-energy theorem,

$$
W_{\mathrm{tot}}=K_{2}-K_{1} \Longleftrightarrow-\frac{1}{2} k d^{2}=-\frac{1}{2} m v_{1}^{2} \Longleftrightarrow d=\sqrt{\frac{m}{k}} v_{1}=10.6 \mathrm{~cm}
$$

Potential Energyoooscalaz

$>$ Gravitational Potential Energy: $U_{\text {grav }}=m g y \quad W_{g r a v}=-\Delta U_{\text {grav }}$

> Conservative Force:

Because the gravitational force is conservative, the work it does is the same for all three paths.

Potential energy is a minimum at $x=0$.

Mechanical Energy

\checkmark Conservation of Mechanical Energy:

$$
E=K+U=\text { const } \quad \text { (Only conservative forces do work) }
$$

\checkmark If nonconservative forces are present,

$$
\left.\begin{array}{c}
W_{n c}+W_{c o n}=K_{2}-K_{1} \\
W_{c o n}=-\Delta U=U_{1}-U_{2}
\end{array}\right\} \Rightarrow \begin{aligned}
& -\cdots+U_{1}=W_{2}+U_{2} \\
& K_{1}+U_{1}+W_{n c}
\end{aligned}
$$

Test Your Understanding of this Section

The figure shows two different frictionless ramps. The height y_{1} and y_{2} are the same for both ramps. If a block of mass
 m is released from rest at the left-hand end of each ramp, which block arrives at the right-hand end with the greater speed?
(i) block I
(ii) block II
(iii) the speed is the same for both blocks

Example: Speed at the bottom of a vertical circle

Your cousin Throckmorton skateboards from rest down a curved, frictionless ramp. If we treat Throcky and his skateboard as a particle, he moves through a quarter-circle with radius $\boldsymbol{R}=\mathbf{3} \mathbf{~ m}$. Throcky and his skateboard have a total mass of 25 kg . (a) Find his speed at the bottom of the ramp. (b) Find the normal force that acts on him at the bottom of the curve.
(a) The various energy quantities are

$$
\begin{aligned}
& K_{1}=0, U_{g r a v, 1}=m g R \\
& K_{2}=\frac{1}{2} m v_{2}^{2}, U_{g r a v, 2}=0
\end{aligned}
$$

From conservation of mechanical energy,

$$
K_{1}+U_{g r a v, 1}=K_{2}+U_{g r a v, 2} \Rightarrow v_{2}=\sqrt{2 g R}=7.67 \mathrm{~m} / \mathrm{s}
$$

(b) At point 2, the centripetal acceleration is toward the center of the circle and has magnitude: $a_{c}=\frac{v_{2}^{2}}{R}=2 g$
According to Newton's second law, $\Sigma F_{y}=n-w=m a_{c} \Rightarrow n=3 m g=735 \mathrm{~N}$

Example: A vertical circle with friction

Suppose that the ramp of previous Example is not frictionless, and that Throcky's speed at the bottom is only $6.00 \mathrm{~m} / \mathrm{s}$, not the $7.67 \mathrm{~m} / \mathrm{s}$ we found previously. What work was done on him by the friction force?

The various energy quantities are

$$
\begin{aligned}
& K_{1}=0, U_{g r a v, 1}=m g R=735 \mathrm{~J} \\
& K_{2}=\frac{1}{2} m v_{2}^{2}=450 \mathrm{~J}, U_{g r a v, 2}=0
\end{aligned}
$$

Friction force (nonconservative force) does work on Throcky from point 1 to point 2, and thus

$$
K_{1}+U_{g r a v, 1}+W_{f}=K_{2}+U_{g r a v, 2}
$$

M

$$
W_{f}=K_{2}+U_{g r a v, 2}-K_{1}-U_{g r a v, 1}=-285 \mathrm{~J}
$$

The friction force does negative work on Throcky as he descends, so the total mechanical energy decreases.

