Chap2 Laws of Motion

Force (interaction)

$>$ Fundamental interactions:

$>$ Superposition of forces
Two forces \vec{F}_{1} and \vec{F}_{2} acting on a body at point O have the same effect as a single force \vec{R} equal to their vector sum.

Components of a force

Newton's Laws of Motion

$>$ First law: (or Law of inertia)
inertia: the ability of an object to resist a change in its state of motion
$>$ Second law:

$$
\vec{F}_{n e t}=\sum \vec{F}=m \vec{a} \quad\left[1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right]
$$

$>$ Third law: action-reaction pair

Application of Newton's Laws

\checkmark Static application: (object in equilibrium)

$$
\sum \vec{F}=0 \quad \text { or } \quad \sum F_{x}=0, \sum F_{y}=0
$$

A car engine with weight w hangs from a chain that is linked at ring O to two other chains, one fastened to the ceiling and the other to the wall. Find expressions for the tension in each of the three chains in terms of w. The weights of the ring and chains are negligible compared with the weight of the engine.

The free-body diagrams \& choice of coordinate axes are shown abové

$\left.\begin{array}{l}\text { For engine: } \sum F_{y}=T_{1}+(-w)=0 \Longleftrightarrow T_{1}=w \\ \text { For ring } O: \sum F_{y}=T_{3} \sin 60^{\circ}+\left(-T_{1}\right)=0\end{array}\right\} \Rightarrow T_{3}=\frac{2 \sqrt{3}}{3} w$

$$
\sum F_{x}=T_{3} \cos 60^{\circ}+\left(-T_{2}\right)=0
$$

\checkmark Dynamic application: (object not in equilibrium)

$$
\sum \vec{F}=m \vec{a} \quad \text { or } \quad \sum F_{x}=m a_{x}, \sum F_{y}=m a_{y}
$$

A toboggan loaded with students (total weight w) slides down a snow-covered slope. The hill slopes at a constant angle α, and the toboggan is so well waxed that there is virtually no friction. What is its acceleration? What is the magnitude of the normal force exerted by the hill on the
 toboggan?

The free-body diagram for toboggan \& choice of coordinate axes are shown on the right:

Newton's second law in component form tells us that:
x-direction: $\sum F_{x}=w \sin \alpha=m a_{x} \quad \Longrightarrow a_{x}=g \sin \alpha$
y-direction: $\sum F_{y}=n-w \cos \alpha=m a_{y}=0 \Longleftrightarrow n=m g \cos \alpha$

Exercise:

An air-track glider with mass \boldsymbol{m}_{1} moving on a level, frictionless air track in the physics lab. The glider is connected to a lab weight with mass m_{2} by a light, flexible, non-stretching string that pass over a stationary, frictionless pulley. Find the acceleration of each body and the tension in the string.

The free-body diagrams for glider \& weight, and coordinate systems are shown on the right:

While the direction of the two bodies' accelerations are different, their magnitudes are the same. Thus it can be expressed as:

$$
a_{1 x}=a_{2 y}=a
$$

Newton's second law gives:
Glider: $\quad \sum F_{y}=n-m_{1} g=0$

$$
\sum F_{x}=T=m_{1} a
$$

$\left.\begin{array}{c}\sum F_{x}=T=m_{1} a \\ \text { Lab weight: } \sum F_{y}=m_{2} g-T=m_{2} a\end{array}\right] \Rightarrow a=\frac{m_{2}}{m_{1}+m_{2}} g \Leftrightarrow \begin{gathered}\downarrow \\ T=\frac{m_{1} m_{2}}{m_{1}+m_{2}} g\end{gathered}$
(a) Free-body diagram for glider
(b) Free-body diagram for weight

Exercise:

A $50.0-\mathrm{kg}$ woman stands on a bathroom scale while riding in an elevator. The elevator is initially moving downward at $10.0 \mathrm{~m} / \mathrm{s}$; it slows to a stop with constant acceleration in a distance of $\mathbf{2 5 . 0} \mathbf{~ m}$. What is the reading on the scale?

The free-body diagram for woman $\&$ choice of coordinate axes
 are shown on the upper right, the positive y-axis is chosen to be upward.

According to the constant-acceleration equation,

$$
a_{y}=\frac{v_{y}^{2}-v_{0 y}^{2}}{2\left(y-y_{0}\right)}=\frac{0^{2}-(-10.0)^{2}}{2(-25.0)} \mathrm{m} / \mathrm{s}^{2}=+2.00 \mathrm{~m} / \mathrm{s}^{2}
$$

Newton's second law gives in the y-direction,

By Newton's third law, the magnitude of the downward force exerted by the woman on the scale (i.e. the reading on the scale) equals the magnitude of normal force n.
So the scale reads 590 N.

Frictional Forces

$>$ Static friction: $\vec{f}_{s}=-\vec{F}$

$$
f_{s} \leq f_{s, \max } ; f_{s, \max }=\mu_{s} n \quad\left(\mu_{s}: \text { coefficient of static friction }\right)
$$

$>$ Kinetic friction: $f_{k}=\mu_{k} n \quad\left(\mu_{k}:\right.$ coefficient of kinetic friction)

$$
f_{k}<f_{s_{\text {max }}}
$$

$>$ Rolling friction

Exercise:

A toboggan loaded with students (total weight w) slides down a snow-covered slope. The wax of the toboggan has worn off, so there is now a nonzero coefficient of kinetic friction μ_{k}. The toboggan accelerates down the hill, and the hill slopes at a constant angle α. Derive an expression for the acceleration in terms of $\mathrm{g}, \alpha, \mu_{\mathrm{k}}$, and w.

The free-body diagram for toboggan \& choice of coordinate axes are shown on the right:

Newton's second law in component form tells us that:
y-direction: $\sum F_{y}=n+(-m g \cos \alpha)=0 \sum n=m g \cos \alpha$
x-direction: $\quad \sum F_{x}=m g \sin \alpha+\left(-f_{k}\right)=m a_{x}$

$$
\left.\left.\begin{array}{c}
f_{k}=\mu_{k} n \\
n=m g \cos \alpha
\end{array}\right] \Longrightarrow f_{k}=\mu_{k} m g \cos \alpha\right]
$$

$$
a_{x}=g\left(\sin \alpha-\mu_{k} \cos \alpha\right)
$$

Dynamics of Circular Motion

$$
\begin{aligned}
F_{\text {net }}=\sum F=m a_{c} & =m \frac{\nu^{2}}{R} \quad \text { (uniform circular motion) } \\
& =\frac{4 \pi^{2} m R}{T^{2}}=m R \omega^{2}
\end{aligned}
$$

An inventor designs a pendulum clock using a bob with mass m at the end of a thin wire of length L. Instead of swinging back and forth, the bob is to move in a horizontal circle with constant speed ν, with the wire making a fixed angle β with the vertical direction. This is called a conical pendulum because the suspending wire traces out a cone. Find the tension F in the wire and the period \boldsymbol{T} (the time for one revolution of the bob).

Newton's second law in component form says,
$\left.\left.\begin{array}{l}y \text {-direction: } \sum F_{y}=F \cos \beta+(-m g)=0 \sum F=m g / \cos \alpha \\ x \text {-direction: } \quad \sum F_{x}=F \sin \beta=m a_{c}\end{array}\right] \Longrightarrow \begin{array}{c}R=L \sin \beta \\ a_{c}=g \tan \beta \\ a_{c}=\frac{4 \pi^{2} R}{T^{2}}\end{array}\right] \Rightarrow T=2 \pi \sqrt{\frac{L \cos \beta}{g}}$

Exercise:

A passenger on a carnival Ferris wheel moves in a vertical circle of radius R with constant speed v. The seat remains upright during the motion. Find expressions for the force the seat exerts on the passenger at the top of the circle and at the bottom.

The free-body diagrams for the two positions are shown on the right:
The positive y-direction is taken as upward in both cases.
At the top, the acceleration is downward, so $a_{y}=-v^{2} / \boldsymbol{R}$, and Newton's second law says
Top: $\sum F_{y}=n_{T}+(-m g)=m a_{y}=-m \frac{v^{2}}{R} \Longrightarrow n_{T}=m g\left(1-\frac{v^{2}}{g R}\right)$
At the bottom, the acceleration is upward, so $a_{y}=+v^{2} / R$, and Newton's second law says
(a) Free-body diagram for passenger at top
(b) Free-body diagram
 for passenger at bottom

Bottom: $\sum F_{y}=n_{T}+(-m g)=m a_{y}=+m \frac{v^{2}}{R} \Longrightarrow n_{T}=m g\left(1+\frac{v^{2}}{g R}\right)$

